Как обустроить мансарду?



Как создать искусственный водоем?



Как наладить теплоизоляцию?



Как сделать стяжку пола?



Как выбрать теплый пол?



Зачем нужны фасадные системы?



Что может получиться из балкона?


Главная страница » Энциклопедия строителя

содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3]

страница - 0

Анализ изменений геоакустической эмиссии в процессе подготовки сильных землетрясений

на Камчатке

Купцов А. В. (ikir@ikir.kamchatka.ru), Ю.В. Марапулец, Б.М. Шевцов.

Институт космофизических исследований и распространения радиоволн

(ИКИР) ДВО РАН

ВВЕДЕНИЕ

Известно, что землетрясениям предшествует длительный процесс подготовки. Предложено много моделей этого процесса, имеющих различия в деталях, но одинаково описывающих основные этапы подготовки. Первый из них, самый продолжительный во времени, длится годами и характеризуется накоплением упругой потенциальной энергии в гипоцентральной области. Следующий этап быстрого роста упругих напряжений, приводящих к лавинному трещинообразованию и подготовке магистрального разрыва, измеряется уже сутками или часами [1, 2]. Именно этот временной период и представляет интерес для исследований характеристик геоакустических шумов.

Известно, что сейсмоакустическая эмиссия, постоянно наблюдаемая в скважинах, туннелях, на поверхности Земли и на дне водоемов, характеризуется высокой чувствительностью к слабым изменениям состояния земной коры, связанных, в том числе, и с активным трещинообразованием [3]. Размеры трещин сравнительно малы, и вызванные ими упругие колебания находятся в более высокочастотной части спектра по сравнению с волнами, которые создаются основной фазой сейсмического события [4].

Геоакустическая эмиссия (ГАЭ) исследовалась во многих работах. Так, например, в Армении во время Спитакского землетрясения в 80 км от эпицентра было зафиксировано при магнитуде М = 7.1 увеличение амплитуды ГАЭ в диапазоне 800-1200 Гц за 12 часов до и после основного события [5]. В Японии аналогичный отклик ГАЭ на частотах 500 и 1000 Гц был обнаружен только в одном случае при М = 4.5, неглубоком (10 км) залегании очага землетрясения и дальности до эпицентра 23,5 км [6]. Этот результат был получен на сейсмологической обсерватории Мацуширо Метеорологического Агентства Японии, проводившей измерения в течение семи месяцев 1998 года, начиная с февраля, в туннели на глубине 100 м от поверхности Земли, с использованием чувствительного трехкомпонентного сейсмоакустического приемника с магнитоупругим преобразователем в частотном диапазоне до 1000 Гц [7].

Особенностью сейсмических процессов в районе полуострова Камчатка является то, что гипоцентры большинства землетрясений располагаются под дном прибрежной зоны Тихого океана. Предполагалось, что в этих условиях контроль сейсмического режима возможен посредством придонных гидроакустических систем.

Проводимые с 1986 по 1991 г. эксперименты показали, что для регистрации и исследования сейсмических сигналов килогерцового диапазона гидроакустические системы благодаря своим техническим характеристикам достаточно эффективны и имеют преимущества перед традиционно используемыми геофонами, однако их применению в этих целях препятствуют помехи от прибоя, судоходства и других источников океанических шумов [8]. Это привело к необходимости размещения приемных систем на суше в закрытых водоемах, где естественные шумы значительно меньше и хорошо контролируемы.

В связи с сильным затуханием высокочастотные геоакустические сигналы не передаются на большие расстояния из очагов будущих землетрясений, а создаются вблизи пунктов наблюдений в результате трещинообразования под действием деформаций [2], дальность распространения которых определяется размером очага.


Диаграмма направленности излучения звука трещинами анизотропная [4, 9], что при выделенной ориентации трещин, например, в сдвиговых напряжениях создает анизотропию геоакустических шумов. Цель данной работы в исследовании характера геоакустических проявлений деформационных воздействий, обусловленных подготовкой сильных сейсмических событий Камчатки.

АППАРАТУРА И МЕТОДИКА НАБЛЮДЕНИЙ Для регистрации сигналов использовались две приемные системы, установленные в небольших водоемах. Каждая система состояла из четырех совмещенных направленных приемников градиента давления, ориентированных по сторонам света (кроме запада) и вниз. Западный сектор был исключен из наблюдений вследствие анизотропии геоакустических шумов с преимущественным направлением на зону субдукции. Средняя чувствительность приемников с предусилителями в килогерцовом диапазоне составляет сотни мВ/Па. Преимущества пьезокерамических приемников перед геофонами проявляются при исследовании высокочастотных шумов.

Конструкция из четырех разнонаправленных приемников позволяет достаточно эффективно оценивать анизотропию шумов. Одна из таких систем размещена на дне укрытого бассейна размерами 2 х 2 х 2 м3 в пункте комплексных геофизических наблюдений (КГЭП) на р. Карымшина (52.49° N, 158.09° E), а другая - на удалении 20-ти км к северу на дне оз. Микижа (52.60° N, 158.14° E), его площадь 200 х 700 м2, а наибольшая глубина 4 м. Первая точка приема находится в эксплуатации с июля 1999 г., а вторая - с ноября 2001 г. В пунктах наблюдений толщина осадочных пород, наиболее препятствующих распространению высокочастотных сигналов, составляет примерно 40 и 50 м, соответственно. Измерения коэффициента поглощения звука этими породами в килогерцовом диапазоне дали величину около 200 дБ/км.

Регистрация акустических шумов со всех четырех направлений осуществлялась непрерывно через полосовые фильтры в диапазонах частот: 0.1-10, 10-50, 50-200, 200700, 700-1500, 3000-6000, 8000-11500 Гц. Частотно разделенные сигналы через амплитудные детекторы подавались на интеграторы и после четырехсекундного накопления оцифровывались и записывались в компьютер. Одновременно, для более детального анализа, производится запись на жесткий диск акустических шумов в режиме реального времени в полосе частот 0-22 кГц, поступающих непосредственно с приемников на входы двух синхронизированных системным таймером звуковых карт.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ Деление на частотные поддиапазоны позволило довольно четко отделить каналы подверженные различного рода помехам от каналов не реагирующих на них. Контролируемые метеоусловия (ветер и дождь) оказывали заметное влияние на регистрируемый сигнал в низкочастотном диапазоне, но не мешали наблюдениям высокочастотной ГАЭ. Следует отметить, что для горизонтальных датчиков имело значение направление ветра, а для вертикального приемника - только модуль скорости. На рис.1 показано, что низкочастотные каналы до 500 Гц заметно реагируют на сильный ветер, а на более высоких частотах амплитуда ветровой помехи сравнима с уровнем фоновых шумов.


Амплитуда, отм.ед

1Э0О

1 etc -:<м а

э^^

SUO зоо

1 cd

width=143

f =1 00 Гц

f=500 Гц

f=5000 гц

......- i L - 1 ь i ,

width=429

-1-1-E-1-1-1-F~

1:00 Э.П0 500 7-JK) 9.00 1VOD 1100 1&ВД 1?:P0 iaOD 21:00. «ОС

Рис.1. Влияние скорости ветра на частотные каналы.

Техногенные помехи (шум самолетов, автотранспорта и дизель-генератора) вызывали кратковременные возмущения, которые довольно просто учитывались при интерпретации данных. Вследствие промерзания почвы эти помехи, как и метеорологические, сильнее сказывались зимой, но понижались при выпадении снега. Собственные шумы промерзания почвы повышали фоновый уровень в декабре.

Для анализа сейсмической обстановки использовались данные Камчатской опытно-методической сейсмологической партии.

Предварительный анализ полученных данных показал, что ГАЭ, сопровождающая подготовку сейсмического события, зависит от его класса, расстояния до эпицентра и глубины. В соответствии с этим, за период наблюдений были отобраны события класса K > 11, К = 1.5М + 4.65, где М > 4 - магнитуда [10], находящиеся от пунктов наблюдений не далее 250 км.

Группа близко расположенных друг от друга землетрясений, имеющих расстояние между собой много меньше расстояния до пункта наблюдения и произошедших в суточном временном интервале, объединялась в одно событие с суммарной энергией.

На рис. 2 представлены результаты наблюдений ГАЭ с вертикального приемника. Они иллюстрируют поведение геоакустических сигналов на оз. Микижа, предшествовавших сейсмическому событию, произошедшему 18.12.2002 в 11:09:21 по UT, с координатами: 52.97° N, 159.80° Е; и параметрами: D = 113 км, H = 42 км, K = 12.1, где K - энергетический класс, D - расстояние до эпицентра и H - глубина. Момент землетрясения здесь и всюду ниже указан на рисунке вертикальной стрелкой.

В высокочастотной части спектра за 25 часов до события наблюдалось сильное и продолжительное увеличение сигнала, многократно превышающее уровень фона. В полосе частот 3-6 кГц амплитуда сигнала максимальна и в пиковых значениях выходит за пределы динамического диапазона регистрирующей аппаратуры.




содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3]

© ЗАО "ЛэндМэн"