Как обустроить мансарду?



Как создать искусственный водоем?



Как наладить теплоизоляцию?



Как сделать стяжку пола?



Как выбрать теплый пол?



Зачем нужны фасадные системы?



Что может получиться из балкона?


Главная страница » Энциклопедия строителя

содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3]

страница - 2

Амплитуда, j

отн. ед.

1000"

ЗОООбОООГц

J Ml ,1.1 И lalAf*"

width=114

0:СОб:0О9:00112:00 Г15:00 18:00 21:00

4i

-100

2X3

400

width=460

0:006:0012:00 18:00 ООО ЁЛО 12:00 "13:00

width=455width=86

0:00 b:00 12Л0 iSdOO 0Л0 йЛО l5:CC 19:00 Г"

Рис.7. Разнообразие форм высокочастотных геоакустических аномалий, зарегистрированных на р. Карымшина (а и б) и на оз. Микижа (в и г).

Это меньше числа таких землетрясений по каталогу, что объясняется простоями регистрирующего оборудования. После объединения близких по пространству и во времени сейсмических событий получилось 46 наблюдений на измерительном пункте «Карымшина» и 28 - на оз.Микижа. Из 46 наблюдений на р. Карымшина 18 имели аномальное повышение уровня акустического сигнала в высокочастотной части спектра примерно за сутки до события, что составляет 39%. Из 28 наблюдений на оз. Микижа 16 имели геоакустический отклик (57%). В среднем - 48%. Число одновременных наблюдений меньше 28, поскольку не всегда оба пункта работали одновременно. Из анализа пространственного распределения событий можно заключить, что к юго-востоку от м. Шипунского находится область с очень слабой передаточной функцией деформационных влияний. Возможно, это связано с системой основных разломов, которые изображены на рис. 5 и 6 пунктирными линиями [11], точки регистрации лежат по обе стороны одного из них, и со свойствами пластичности пород самой области. Из прилегающих к пунктам наблюдений областей деформации передаются достаточно эффективно. Очевидно, что расширение сети пунктов наблюдений позволит уменьшить зоны расположения эпицентров землетрясений, не имеющих предшествующего им аномального сигнала.

Анализ информации, представленной на рис. 8, позволяет сделать вывод, что энергия геоакустических аномалий существенно зависит не только от параметров сейсмического события, энергетического класса и расстояния до гипоцентра, но и от его местоположения, что связано с естественной неоднородностью сейсмического полигона.

Используемые приемники градиента давления регистрируют его проекцию на ось, что дает возможность вычислить направление прихода возмущения ГАЭ. Для анализа данного явления были отобраны несколько аномальных сигналов, предшествующих сейсмическим событиям, амплитуда которых не превышала динамический диапазон измерительного тракта, т.е. не аппаратура не находилась в режиме ограничения. Пример такого сигнала рассмотрен на рис.9. Слева на рисунке представлены диаграммы по


width=568

157.0158.0159.0160.0161.0157.0 158.0 15Э.0 160.0 161.0

А)V

Рис.8. Пространственное распределение землетрясений, подготовка которых наблюдалась на р. Карымшина и оз. Микижа: ▲ - пункт наблюдений, о - событие с геоакустической аномалией, + - событие без аномалии.

1200 900 600

300

о

1200 900 600 300

о

600 300

о

1200 900 600 300

о

1 Амплитуда, отн. ед.

■u,. . Li.

.Л.

4500 Гц

север /-ps

1

1 1

восток

1 ilLllL.. .л 1 ^

..... 1 Lj.i,

1

1.1 ...

):00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

54.0

53.5

53.0

52.5

52.0

51.5

51.0

П-ов Камчатка ,

"-КГЭП "Мшсижа"

Время, ч

157.0

158.0 1

15Э.01

160.0

161.

Рис.9. Геоакустические возмущения перед сейсмическим событием, зарегистрированные на оз. Микижа по всем направлениям и расположение эпицентра события. направлениям в том же частотном диапазоне. Из рисунка видно, что наиболее сильный сигнал поступил с северного датчика, более слабый - с восточного, и очень слабый - с южного.

Складывая амплитуды как вектора получим северо - восточное направление. Справа на рисунке заштрихованным кружком отмечено расположение эпицентра землетрясения, которому предшествовал данный аномальный сигнал, а треугольником


обозначено местоположение измерительного пункта. Видно, что фактическое и расчетное направления примерно совпадают.

На диаграмме, представленной на рис.10, показаны результаты анализа 10 аномальных сигналов (светлыми прямоугольниками изображены фактический азимут на эпицентр событий, черными - расчетный азимут прихода аномального сигнала, заштрихованными - разница между ними). Разброс в полученных результатах (разница составила от 2 до 54 градусов) можно объяснить тем, что в течение времени накопления (4 секунды) вместе с интересующим нас сигналом одновременно регистрируются и другие геоакустические сигналы, которые и вносят ощутимую погрешность в расчеты.

1 ев

width=546

расчетный ЕЗЭШЕЯ

фактический!

Рис.10. Азимут на сейсмические события и расчетный азимут на аномальные сигналы, предшествующий этим событиям.

Исходя из вышесказанного, можно сделать вывод, что направление на источник сигнала, соответствующего процессу подготовки сейсмического события, совпадает с направлением на эпицентр готовящегося землетрясения.

ВЫВОДЫ

1.Исследованы характеристики высокочастотных геоакустических шумов, предшествующих сильным сейсмическим событиям на Камчатке.

2.Показано, что примерно за сутки до основной фазы события возникают аномалии в поведении сигналов, амплитуда которых зависит от энергетического класса и местоположения землетрясения.

3.Определены области пространственного распределения событий по признаку появления или отсутствия геоакустических аномалий.

4.Показаны информативность килогерцового диапазона в наблюдениях геоакустических аномалий и незначительность помех в высокочастотной части спектра.

5.Пеленг на источник аномального сигнала, предшествующий сильному сейсмическому событию, совпадает с пеленгом на эпицентр самого готовящегося события.

Работа выполнена при поддержке проектов ДВО РАН № 04-1-02-008 и РФФИ № 03-05-65302.

СПИСОК ЛИТЕРАТУРЫ

1.Райс Дж. Механика очага землетрясений. М.: Мир. 1982. 217 с.

2.Соболев А. Г., Пономарев А. В. Физика землетрясений и предвестники. М.: Наука.

2003. 270 с.




содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3]

© ЗАО "ЛэндМэн"