Как обустроить мансарду?



Как создать искусственный водоем?



Как наладить теплоизоляцию?



Как сделать стяжку пола?



Как выбрать теплый пол?



Зачем нужны фасадные системы?



Что может получиться из балкона?


Главная страница » Энциклопедия строителя

содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3] [стр.4]

страница - 2

Как следует из обобщенного уравнения Лиувилля, необратимость возможна при зависимости обобщенных сил от скоростей подсистем. Мы показали выполнение этого условия для систем твердых дисков. Это было сделано с помощью неньютоновского уравнения движения сталкивающихся дисков. Но все природные силы потенциальны [19]. Значит, чтобы доказать существование необратимости в реальных системах, надо показать зависимость обобщенных сил от скоростей при условии потенциального взаимодействия элементов системы. Это доказательство можно выполнить с помощью уравнения движения подсистем.

3. Уравнение движения подсистем.

Нами используется условие, что неравновесные системы характеризуются относительными движениями подсистем. Как следует из обобщенного уравнения Лиувилля, для существования необратимости в неравновесных системах потенциально взаимодействующих элементов, необходима зависимость от скоростей обобщенных сил и их стремление к нулю. Т.е. установление равновесия связано с работой обобщенных сил, которая ведет к трансформации энергии относительного движения подсистем во внутреннюю энергию. Так как по условию задачи полная энергия всей системы не меняется, то уменьшение энергии относительного движения может быть обусловлено только ее трансформацией во внутреннюю энергию подсистем при изменении функции распределения системы. Т.е. установление равновесия связано с работой обобщенных сил, которая ведет к трансформации энергии относительного движения подсистем во внутреннюю энергию.

Покажем, что, несмотря на потенциальность сил в уравнениях движения элементов, силы взаимодействия их подсистем зависят от скоростей подсистем.

Рассмотрим систему потенциально взаимодействующих элементов. Пусть энергия

1N

системы равна: EN = TN + UN = const, где TN = — У vf - кинетическая энергия, UN (rij) -

2i=1

потенциальная энергия, rij = ri _ rj - расстояние между i и j элементами, N -число

элементов системы. Массы элементов равны единице.

Уравнение Ньютона можно получить, продифференцировав по времени выражение

n dU

для ее энергии. Оно имеет вид: & =_ У —N .

Уравнение Ньютона обратимо. С точки зрения дальнейшего анализа важно, что градиент потенциальной энергии является силой. Она определяет скорость, с которой осуществляется переход кинетической энергии в потенциальную энергию. Величина силы однозначно определяется точкой пространства. Но уже для системы двух тел сила зависит от самого движения этих тел. Это объясняется тем, что помимо кинетической и потенциальной энергий в системах взаимодействующих тел появляется третий тип энергии - энергия связи элементов системы. Для двух тел путем перехода в систему координат центра масс этот тип энергии удается исключить и найти решения задачи двух тел с помощью уравнений Ньютона. Для трех тел такое исключение в общем случае становится невозможным. Поэтому задача трех тел с помощью уравнения Ньютона не решается. Отсюда следует, что нельзя априори утверждать о потенциальности взаимодействия систем многих тел при условии потенциальности парных взаимодействий элементов.

Получим уравнения движения для подсистем и покажем, как из них следует непотенциальность обобщенных сил, т.е. сил взаимодействия подсистем. Представим энергию системы в виде суммы кинетической энергии движения подсистемы как целого -

JT tr*-*rf ins

N , кинетической энергии движения ее элементов относительно центра масс- TN и


L L-1

LVV& + XX

j=i+1 i=1

kVkV& + X X

j=i+1i=L+1

& -U

L + -г,

ij

L

-U

XXj f- (76)

jK =1iL =1iLJK

Здесь принято условие неподвижности центра масс системы, т.е. LVL + KVK =0, где VL и VK -скорости движения центра масс подсистем. Подсистемы состоят из L и K элементов, vij - относительная скорость i и j элементов. Двойные индексы приняты для

обозначения, каким подсистемам принадлежат элементы.

Левые части в (7а, 7б) определяют изменения энергий подсистем в результате их взаимодействия. Первые члены задают изменение кинетической энергии движения подсистем как целого. Вторые члены описывают преобразование связанной энергии. Правая часть (7а, 7б) определяет изменение энергии взаимодействия подсистем.

Из (7а, 7б) для случая L = K находим уравнение движения одной из подсистем:

L L-1

^ = - ут ZZn

L j=i+1 i=1

& -и

JK =1iL =1 i LJ K

1

- > > <v..\ .

L ^

Уравнение (7) определяет движение подсистем в результате действующих между ними обобщенных сил. Как следует из вида правой части уравнения (7), обобщенная сила зависит от относительных скоростей элементов подсистемы, несмотря на потенциальность взаимодействия самих элементов системы. Зависимость обобщенной силы от скорости обусловлена появлением в уравнении движения члена, определяемого связанной энергией. Таким образом, принятое нами разбиение энергии подсистемы на три типа оказалось принципиальным. Это позволило увидеть, что помимо потенциальной и кинетической энергий, в системе появляется еще один важный тип энергии. При отсутствии взаимодействия подсистем эти типы энергии сохраняются. При V& =0, (7)

энергия относительного движения подсистем исчезает. В этом случае она вся содержится в потенциальной и кинетической энергиях относительного движения элементов. Таким образом, зависимость обобщенной силы от скорости доказана.

Обсудим отличие уравнения движения подсистем от уравнения Ньютона.

Уравнение Ньютона для отдельных элементов можно трактовать, как уравнение для сил, работа которых определяет преобразование кинетической энергии элемента в его потенциальную энергию. При этом соблюдается условие сохранения суммарной кинетической и потенциальной энергий элемента. Таким образом, в уравнение Ньютона

потенциальной энергии их взаимодействия - U%f. Энергию Е™ = + Uf назовем связанной. При отсутствии внешних сил энергии и Е1™ будут интегралами движения. Кинетическая энергия является функций скорости центра масс, а связанная

энергия определяется относительными скоростями элементов и расстояниями между ними. В уравнениях движения сделаем такую замену переменных, в которых связанная энергия и кинетическая энергия движения системы будут записаны через независимые переменные. Такими переменными являются относительные скорости элементов и скорости движения центра масс подсистем.

Предположим, что система так приготовлена неравновесным образом, что она представляет собой две равновесные подсистемы. Результаты анализа этого случая легко обобщаются на любые неравновесные системы и для любого их разбиения.

Продифференцировав энергию системы по времени, сгруппировав члены, соответствующие элементам подсистем, получим уравнения, определяющие обмен энергией подсистем в новых переменных: относительные скорости элементов, расстояния между элементами и скорость центра масс. Эти уравнения будут иметь вид [21]:

iix<?•)

Jk =1iL =1iijx


силы полностью определяется градиентом потенциальной энергии частиц. Работа силы определяет, сколько кинетической энергии должно перейти в потенциальную энергию при переходе системы из одной точки пространства в другую. Таким образом, силы и потенциальная энергия однозначно связаны и зависят только от координат. Поэтому работа потенциальных сил по замкнутому контуру равна нулю. Такая связь силы и работы обуславливает обратимость.

Уравнение движения подсистем определяет обобщенные силы. В отличие от ньютоновских сил, их работа преобразует кинетическую энергию движения подсистемы не только в их потенциальную энергию, но и в другой тип энергии, которую мы назвали связанной. Связанная энергия является суммой кинетической энергии относительного движения элементов и их энергии потенциального взаимодействия. Она зависит от вида функции распределения частиц подсистемы по скоростям и равна полной энергии подсистемы за вычетом потенциальной энергии ее взаимодействия с другими подсистемами и кинетической энергии движения подсистемы как целого. Из-за возможности преобразования кинетической энергии движения подсистем в их связанную энергию работа обобщенных сил по замкнутому контуру отличается от нуля. Функция распределения скоростей элементов подсистемы относительно центра масс сферически симметрична. При отсутствии взаимодействий связанная энергия, как и энергия движения подсистемы, является инвариантом движения.

Таким образом, уравнение Ньютона описывает только преобразование кинетической энергии в потенциальную. Но когда появляется иной тип потока энергии, например, как в данном обусловленный с изменением связанной энергии, определяемой относительным движением частиц подсистемы, тогда уравнение Ньютона не применимо. Возникает вопрос, а почему для всей замкнутой системы уравнение Ньютона справедливо? Это объясняется тем, что работа непотенциальных сил внутри всей системы всегда равна нулю [15].

Преобразование кинетической энергии подсистем в их связанную энергию благодаря работе обобщенных сил, приводит к уменьшению относительных скоростей подсистем. Это преобразование происходит в результате изменения функции распределения элементов подсистемы по скоростям, при котором уменьшается скорость движения подсистемы. В равновесии относительное движение подсистем отсутствует. Возврат связанной энергии в кинетическую энергию подсистемы невозможен. Действительно этот возврат возможен только при условии спонтанного появления внутри подсистемы обобщенных сил, а их появление означает нарушение симметрии, поскольку силы являются векторными величинами.

Отметим, что динамика упругих дисков также подчиняется уравнению (7), если исключить из него потенциальную энергию. Как в системах упругих дисков, так и в системах потенциально взаимодействующих элементов, природа необратимости одинакова. Она обусловлена трансформацией энергии относительного движения подсистем в связанную энергию за счет работы обобщенных сил.

4. Классическая механика и термодинамика

Рассмотрим взаимосвязь классической механики с термодинамикой. Наличие двух инвариантов движения Eins и Ttr , а также характер их трансформации при

взаимодействии систем, определяемый уравнением (7), позволяют заметить глубокую аналогию между уравнением (7) и основным уравнением термодинамики [2, 3]: dE = dQ -PdY. Здесь, в соответствии с принятой терминологией [2], E -внутренняя энергия подсистемы, Q -тепловая энергия, P - давление, Y -объем.

Изменение энергии выделенной подсистемы обусловлено работой внешних сил. Поэтому изменению полной энергии подсистемы соответствует dE.




содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3] [стр.4]

© ЗАО "ЛэндМэн"