Как обустроить мансарду?



Как создать искусственный водоем?



Как наладить теплоизоляцию?



Как сделать стяжку пола?



Как выбрать теплый пол?



Зачем нужны фасадные системы?



Что может получиться из балкона?


Главная страница » Энциклопедия строителя

содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7]

страница - 0

Вириальный подход к решению задачи о глобальной динамике Земли

Ферронский В.И. (ferron@aqua.laser.ru)

Институт водных проблем Российской академии наук

C времен Ньютона и Клеро считают, что Земля является инертным телом, ее вращательное движение происходит под действием сил инерции, а динамические эффекты определяет лунно-солнечный потенциал сил [5]. Идея инерционного вращения Земли появилась при рассмотрении задачи о фигуре планеты как о вращающемся сферическом теле, заполненном жидкостью и находящемся в гидростатическом равновесии в однородном силовом поле Солнца. Эта идея основывалась на представлении о том, что сумма внутренних сил взаимодействующих масс и вращающих моментов планеты равна нулю. Такое представление пришло из задачи двух тел, где последние в рамках оговоренных допущений были приняты за точечные массы, из которых, по Ньютону, исходили силы их притяжения, образуя центральное поле. В результате, в геодинамике утвердилось и до сих пор остается умозрительное представление о гидростатическом равновесии масс планеты и ее инерционном вращении. Что касается наблюдающихся эффектов прецессии и нутации оси вращения при движении Земли, то их объясняют возмущением Луны и Солнца, связанным с возможным избытком массы в зоне экватора из-за эллиптичности планеты.

Современные наблюдательные факты свидетельствуют о том, что идея гидростатического равновесия Земли не подтверждается. По результатам анализа большого числа измерений зональных и тессеральных гравитационных моментов, выполненных в последние десятилетия с помощью геодезических искусственных спутников при исследовании гравитационного поля Земли, установлено, что планета не находится в состоянии гидростатического равновесия. Ее фигура отклоняется от нормального эллипсоида вращения на величину квадрата сжатия, т.е. ~(1/300)2 [1, 3, 6]. Как отмечает Мельхиор [6], теперь есть доказательство того, что Земля не находится в гидростатическом равновесии и это вызывает трудности в интерпретации распределения плотности на основе сейсмических измерений. Однако, добавляет он, мы вынуждены использовать это условия, поскольку нет ничего лучшего. Следует отметить, что в модели инерционного вращения Земли значение ее потенциальной энергии оказывается на три порядка выше кинетической энергии, что противоречит


фундаментальному условию теоремы о вириале сил, согласно которому потенциальная энергия здесь должна быть равна удвоенному значению кинетической энергии.

Проблема вращения Земли обсуждалась на недавнем семинаре НАТО [14]. Было отмечено, что две задачи этой проблемы остаются неразрешенными. Ими являются вариации продолжительности суток и наблюдаемое Чандлеровское движение полюсов с периодом 14 месяцев против 10 месяцев, которые дает модель твердого тела Эйлера. Отмеченные факты, а также наблюдаемое изменение гравитационного поля, неравномерности угловой скорости вращения Земли, тектоника литосферных блоков и плит и глубинные геотектонические процессы свидетельствуют о необходимости развития новых физических подходов в решении задач динамики планеты.

Земля является самогравитирующим телом. Силы гравитационного взаимодействия его масс, а равно и силы инерции являются объемными величинами, действующими в пространстве 4 п. Объемные по природе силы тяжести и силы инерции тела нельзя привести к векторной равнодействующей по определению. Как будет показано ниже, такие силы приводятся к равнодействующему давлению сил, распределенных по поверхности сфероида или эллипсоида. Собственное объемное силовое поле, которое генерируется в результате гравитационного взаимодействия масс тела, вызывает объемное движение и объемные деформации тех же масс. Силовое же поле Солнца и Луны лишь возмущает вращательное и колебательное движение Земли. Эти физические предпосылки использованы ниже для новой постановки и решения задачи о динамике Земли в собственном силовом поле. Задача решается методом моментов в рамках классической механики консервативных (однородных по плотности) и диссипативных (неоднородных) сплошных сред.

Приведение сил тяжести и инерции к равнодействующему сфероиду (эллипсоиду) силового давления

Будем исследовать задачу о динамике Земли как самогравитирующего одномерного шара с однородным и неоднородным распределением плотности массы, непрерывно распределенной по его объему. Движение шара будет относительным и происходит в собственном силовом поле и в силовом поле Солнца.

Из теоретической механики известно, что движение всякого тела слагается из поступательного (орбитального) движения его центра масс (центра инерции), из вращательного движения вокруг центра инерции и из движения масс тела, связанного с


изменением его формы и структуры [2]. В задаче двух тел об орбитальном движении тела последними двумя эффектами пренебрегают из-за их малости.

Для рассмотрения движения одномерного шара в собственном силовом поле его поступательное (орбитальное) движение относительно фиксированной точки (Солнца)

нужно отделить от двух других составляющих движения. После чего можно рассматривать как вращение тела относительно центра масс под действием

собственного поля сил, так и движение, связанное с изменением структуры и формы. Такого отделения требует лишь момент инерции шара, который зависит от выбора системы координат. Силовая же функция, определяемая как эффект взаимодействия всех пар частиц массы шара, не зависит от ее выбора [2]. Момент инерции шара относительно солнечной системы отсчета необходимо разложить на момент инерции его центра масс относительно той же системы отсчета и на момент инерции планеты, взятый в собственной системе отсчета. Чтобы сохранить условия инерциальности собственной системы отсчета, совместим ее с геометрическим центром масс.

Итак, примем абсолютную декартову систему координат ОсЛпС с началом в геометрическом центре Солнца и перенесем ее параллельно осям в геометрический центр симметрии масс шара, обозначив эту систему через Oxyz (рис.1). Момент инерции шара как инертного тела относительно солнечной системы отсчета будет

где mt - инертная частица массы шара в солнечной системе отсчета; Rt - ее расстояние от начала солнечной системы координат.

Для разделения момента инерции (1) воспользуемся методом Лагранжа, который основан на его же алгебраическом тождестве вида

где at и bt - какие угодно величины; n - любое целое положительное число.

Математическое преобразование, связанное с разделением момента инерции n взаимодействующих материальных частиц относительно любой системы координат на две алгебраические суммы впервые было выполнено Якоби в его "Лекциях по динамике" [2, 10, 15]. Якоби было показано, что если ввести обозначения (рис. 1)

I = V m R

с/il 1

Ч

(1)

width=357

& = Xi + A; ni = у + B;Zi = z + C;

V m = M; V тЛ, = MA; V т,Ц = MB; mZ = MC,

где А, В, С - координаты центра масс в абсолютной системе отсчета,




содержание:
[стр.Введение] [стр.1] [стр.2] [стр.3] [стр.4] [стр.5] [стр.6] [стр.7]

© ЗАО "ЛэндМэн"