Как обустроить мансарду?



Как создать искусственный водоем?



Как наладить теплоизоляцию?



Как сделать стяжку пола?



Как выбрать теплый пол?



Зачем нужны фасадные системы?



Что может получиться из балкона?


Главная страница » Энциклопедия строителя

содержание:
[стр.Введение] [стр.1]

страница - 0

Визуализация пространственно-временного распределения интенсивности вариаций ПЭС по данным фазовых измерений сигналов GPS.

Афраймович Э.Л. (afra@iszf.irk.ru), Астафьева Э.И., Гамаюнов И.Ф. Институт солнечно-земной физики СО РАН

1. ВВЕДЕНИЕ

В настоящее время активно развиваются спутниковые методы оптического мониторинга процессов в верхней атмосфере с высоким пространственным разрешением, что позволяет «визуализировать» некоторые геофизические процессы (особенно в авроральной области). Аналогичная технология глобального мониторинга ионосферных неоднородностей (ИН), несмотря на многочисленные экспериментальные исследования, до сих пор не создана. Основным препятствием в создании карт пространственно-временного распределения интенсивности неоднородной структуры ионосферы с помощью известных ранее методов является отсутствие глобальных непрерывных одновременных измерений с высоким пространственно-временным разрешением.

В ряде работ [3, 9] сообщалось, что на средних широтах во время больших магнитных бурь относительная плотность сбоев дальномерных измерений, в частности, измерений разности фаз L1-L2 на двух когерентно-связанных частотах GPS /1=1575.42 МГц и /2=1227.60 МГц превышает соответствующий показатель для магнитоспокойных дней на один-два порядка, достигая единиц процентов от общей плотности наблюдений. Одновременно с этим существенно ухудшается точность позиционирования, являющаяся основным показателем качества функционирования системы GPS [10]. В работах [3, 5, 1011, 13, 14, 15] было показано, что причиной фазовых сбоев является рассеяние сигнала GPS на ионосферных неоднородностях с характерным размером порядка первой зоны Френеля (150-300 м). В результате амплитуда сигнала может на некоторое время уменьшиться до величины ниже уровня шумов, что приводит к срыву сопровождения сигнала и сбоям дальномерных измерений.

В работах [5, 6] было показано, что ионосферные неоднородности, вызывающие рассеяние сигналов GPS, образуются во время главной фазы магнитной бури в пределах аврорального овала, а также в областях с повышенным градиентом электронной концентрации вдали от овала. Кроме того, области с интенсивными мелкомасштабными неоднородностями могут перемещаться в пространстве вслед за крупномасштабными волновыми возмущениями большой амплитуды, которые образуются в авроральной зоне и перемещаются в экваториальном направлении на большие расстояния [6]. Таким образом, актуальной является задача визуализации пространственно-временного распределения интенсивности ионосферных неоднородностей и плотности сбоев дальномерных измерений в системе GPS.

Разработанный авторами метод визуализации пространственного распределения (картирования) неоднородной структуры ионосферы демонстрируется на примере


изменения интенсивности вариаций полного электронного содержания (ПЭС) и плотности сбоев фазовых измерений в системе GPS во время магнитной бури 29-31 октября 2003 г.

В основе метода лежит представление о том, что спектр вариаций ПЭС, измеренный по разности фаз сигналов двух частот GPS, носит степенной характер и отличается от спектра неоднородностей электронной концентрации только наклоном спектра [2, 7]. Это позволяет оценивать изменение интенсивности неоднородностей с размером 100-1000 м по изменениям интенсивности вариаций ПЭС в диапазоне промежуточных масштабов (более 10-100 км, периоды от 1 до 10 мин), т.е. со стороны длинноволновой части спектра [4]. Во время геомагнитного возмущения пропорционально возрастает амплитуда неоднородностей всего диапазона масштабов - от метровых до километровых и более [2], а также амплитуда вариаций ПЭС, при этом наклон спектров ионосферных неоднородностей и вариаций ПЭС остается постоянными.

2. ГЛОБАЛЬНАЯ СЕТЬ ПРИЕМНИКОВ GPS. ФОРМИРОВАНИЕ ОПОРНОЙ СЕТКИ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ.

Глобальная сеть GPS, насчитывающая к середине 2004 г. более 2500 станций GPS, плотно покрывает Северную Америку и Европу. Много меньше станций GPS в азиатском и африканском регионах, в Тихом и Атлантическом океанах. Однако такое заполнение земной поверхности позволяет решать задачу глобального детектирования возмущений с существенно более высоким пространственно-временным разрешением по сравнению с известными ранее методами.

Широта, Bдт,

N

1

дв

т

m

M

Долгота, L

Рис. 1. Опорная сетка пространственного распределения.

n

1

1

В данной работе для получения пространственно-временного распределения интенсивности вариаций ПЭС использовались данные глобальной сети приемников GPS,


расположенных на территории Северной Америки (20°-60°с. ш., 60°-140° з. д.). Заданный регион разбивается на равные участки (клетки) по широте ДВ и по долготе ДК На рис. 1 чёрным квадратом обозначена (m, п)-клетка, где m = 1, 2, M; n = 1, 2, N; M и N -количество столбцов и строк опорной сетки соответственно. Максимальные значения широты и долготы региона равны Lm = MAL; Bn = NAB.

3. ОЦЕНКА АМПЛИТУДЫ ВАРИАЦИЙ ПОЛНОГО ЭЛЕКТРОННОГО СОДЕРЖАНИЯ A И ПЛОТНОСТИ ФАЗОВЫХ СБОЕВ GPS P.

Методика первичной обработки данных подробно описана в работах [3, 9] и в данной работе не рассматривается. Разработанный в ИСЗФ СО РАН программный комплекс GLOBDET [8] позволяет для каждого ряда данных длительностью около 2.3 часа получить оценку относительной плотности сбоев P измерений разности фаз L1-L2, а также отобрать ряды данных ПЭС I(t), которые не содержат срывы фазы. Сбои измерения разности фаз L1-L2 фиксируются в том случае, если модуль приращения ПЭС за интервал времени 30 с (стандартный для основного объема представляемых в сети Интернет данных GPS) превышает заданный порог порядка, например, 100-200 TECU (TECU=1016 эл/м-2). Для заданной /-приемной станции GPS и каждого наблюдаемого j-ИСЗ значение Py определяется как отношение количества сбоев фазы к общему количеству наблюдений.

Ряды I(t), не содержащие срывов разности фаз L1-L2 и пропусков отсчетов, используются для оценок значений Ay и Cj, равных СКО вариаций ПЭС dI(t) в диапазоне периодов 20-60 мин и 1-10 мин, соответственно, для тех же станций и интервалов времени, что и для оценок Py. Вариации с такими периодами соответствуют ионосферным неоднородностям среднего (100-300 км) и километрового (1-10 км) масштабов [2].

4. НОРМИРОВКА И ВИЗУАЛИЗАЦИЯ ПРОСТРАНСТВЕННЫХ

РАСПРЕДЕЛЕНИЙ ПЛОТНОСТИ СБОЕВ ФАЗОВЫХ ИЗМЕРЕНИЙ И ИНТЕНСИВНОСТИ ВАРИАЦИЙ ПЭС.

Необходимость пространственного усреднения значений плотности сбоев фазовых измерений P и СКО вариаций ПЭС A и C обусловлена неравномерностью расположения приёмных станций GPS на земной поверхности. Для всех станций, расположенных в каждой (m, ц)-клетке опорной сетки пространственного распределения (рис.1), вычисляются средние значения плотности сбоев фазовых измерений P и интенсивности вариаций ПЭС A и C. Таким образом, с использованием опорной сетки формируются пространственно-временные распределения плотности сбоев фазовых измерений P(L, B) и интенсивности вариаций ПЭС A(L, B) и C(L, B).

На рис. 2, 3 представлены карты североамериканского региона, размеры чёрных квадратов S на которых пропорциональны СКО вариаций ПЭС S = kP, либо плотности фазовых сбоев S = kA, где к - коэффициент нормировки, равный обратной величине максимального значения СКО вариаций dI(t), либо максимального значения плотности сбоев P.




содержание:
[стр.Введение] [стр.1]

© ЗАО "ЛэндМэн"